
Multi-Object Navigation with dynamically learned neural implicit representations
–

Supplementary Material

Pierre Marza 1* Laetitia Matignon2 Olivier Simonin1 Christian Wolf3
1INSA Lyon 2UCBL 3Naver Labs Europe

Project Page: https://pierremarza.github.io/projects/dynamic_implicit_representations/

1. Training stability and curves

Figure 1 shows the training curves of the 3 different agents
we compared in Table 1 of the main paper: the recurrent
baseline agent (blue), with the Semantic Finder (orange) and
with both implicit representations (green). Left, (a), we see
the evolution of the training reward as a mean and standard
deviation over 3 runs. Right, (b) shows PPL, the main metric
chosen for ranking the agents in the MultiON learderboard,
which we show for different checkpoints during training and
evaluated on the validation set. As can be seen, training is
quite stable over runs, and adding the two representations
provides a boost in performance (as already reported in Table
1 in the main paper).

2. Training procedure of the global reader

The proposed training procedure for the global reader r can
be split into 3 phases. The architecture for the convolutional
decoder Dec() is kept the same in all of them. Table 1
(Dec) details the hyperparameters of its different layers. It is
composed of 6 transpose convolution layers along with batch
norm layers and ReLU activations, except for the last layer
with a softmax activation. Figure 2 provides an overview of
the 3 steps involved in the training of the global reader.

Fully convolutional autoencoder training on absolute maps
— The first step is to train a fully convolutional autoen-
coder on the set of absolute maps Mi, i..1..25k. Only
the decoder weights are kept.

Global reader training on absolute maps The second
step consists in training the global reader to output
embeddings fed to the frozen decoder from the previous
step. The objective is to reconstruct absolute maps
from the weights of the implicit representation. The
global reader weights are kept after this training phase.

*Correspondence: pierre.marza@insa-lyon.fr

Global reader finetuning on egocentric maps The global
reader, whose weights are initialized from the weights
obtained in the previous step, is now trained along with
the same decoder from the first step (also used in the sec-
ond step) on the set of egocentric maps M′

i, i..1..25k.
Both global reader and decoder are finetuned. The out-
put of the global reader is not directly fed to the decoder,
but is passed through linear layers in order to fuse infor-
mation about first the position of the agent, and then its
heading because this time the right operations of shift
and rotation must be applied in order to reconstruct
egocentric maps.

Integrating the pre-trained global reader into the agent
After this pre-training in 3 steps, the weights of the
global reader are frozen and not updated during the RL
training. However, a linear layer is learnt to project
the 576-dim embedding from the global reader into a
256-dim representation fed to the GRU. This linear
layer is trained from reward signals.

3. Visualization of the agent behavior

3.1. Successful episode

Figure 3 provides an example for an episode rollout from
the minival set of the MultiON CVPR 2021 Challenge. The
agent is equipped with both implicit representations. For
each line, from left to right, we first see the RGB-D egocen-
tric view of the agent, then a topdown map with the three
goals (white, pink and yellow squares) and their estimated
location by the Semantic Finder (white, pink and yellow
dots, with a shaded region to denote uncertainty). The ra-
dius illustrating uncertainty is unit-less and only given for
visualization purposes - is not available to the agent in this
particular form. The third illustration shows the implicit
map obtained by querying the Occupancy and Exploration
Implicit Representation, and on the right, there is the recon-
structed output when feeding the embedding of the global

https://pierremarza.github.io/projects/dynamic_implicit_representations/
mailto:pierre.marza@insa-lyon.fr


(a) (b)

Figure 1. Training stability: (a) Evolution of the collected reward on training episodes for the 3 models presented in Table 1 in the main
paper. (b) Evolution of PPL, the official ranking metrics in the MultiON Challenge leaderboard, on val episodes for model checkpoints from
the last 10M training frames.

Forward	pass

Training	supervision1

2

Convolutional autoencoder on absolute maps

Global reader on absolute maps

Weights	init

3 Global reader on egocentric maps

p

Global	occupancy	reader	

Convolutional	decoder	

Convolutional	encoder	

Linear	layers	

Frozen	weights	

Absolute	point	coordinates	

Egocentric	point	coordinates

Implicit	representation	(occupancy)	

p Agent	pose	

ℒ

ℒ

ℒ
Figure 2. Global reader training: Overview of the 3 steps involved in the training of the global map reader.

reader to the convolutional decoder it was trained with. The
last element is a curve showing the evolution of the uncer-
tainty estimation of the Semantic Finder on the currently
provided target object.

In this episode, the agent starts with the white object

within its field of view, but the first target to reach is the
pink cylinder (Row 1). As we can see, the estimation of
goal positions from the Semantic Finder are wrong, which
is expected as the episode has not yet started. However, the
associated uncertainty is high, allowing the agent to discard



this information. The agent then explores until it observes
the pink object (Row 2). At that point, the uncertainty about
the object to find drops. The estimate of the position of
the pink object will be updated as training samples will be
added to the semantic replay buffer. Also note that at that
point the estimate of the position of the white object from
the Semantic Finder is accurate as the object has already
been seen previously. The agent then goes towards the pink
target object and calls the found action (Row 3). Estimation
of the positions of pink and white objects are accurate. The
next target to find is the white object. The uncertainty about
the current target is low as the white object has already
been observed. The agent backtracks (Row 4) and goes
towards the white object to call the found action (Row 5).
The next goal is the yellow cylinder. At that point, the
uncertainty about the current target increases as the yellow
cylinder has not yet been within the agent’s field of view.
The agent explores (Row 6) and when the target is within its
field of view (Row 7) the uncertainty related to the target to
find drops. The agent goes towards the yellow object and
calls the found action (Row 8). At the end of the episode,
the Semantic Finder is able to localize the 3 objects, and
the associated uncertainties are low. All objects have been
successfully found, so this episode is considered as a success.

3.2. Failure case

Figure 4 shows an example of unsuccessful episode. The
agent and the setup are the same as described in the previous
subsection. The agent can see the white target at the begin-
ning of the episode, but it is far and largely occluded.The
first target to find is the blue cylinder. It thus explores the
scene until seeing the object. The uncertainty thus drops, the
prediction of the target position on the map is now correct. It
is interesting to see that the prediction of the location of the
white target is also pretty accurate even though it was hard to
detect at the beginning of the episode. The agent reaches the
blue target and calls the Found action. The next target to find
is the white object. The uncertainty is not 0 but relatively
small as the agent has already seen the white target before.
It goes towards the object, and when it is within its field of
view, the uncertainty drops to 0 and the location prediction
on the map is accurate. The agent calls the Found action.
It has thus succeeded in finding the first two objects that
were quite close to its initial position. However, as shown
in the last 3 rows, the agent does not succeed in exploring
the environment enough and never finds the last target which
is the green cylinder. After a few steps, it calls the Found
action at the wrong location.

4. Perception modules
Two different modules are used in this work. The first one,
responsible for representation perception, extracts represen-
tations from the RGB-D observation to populate the train-

ing replay buffer of the Semantic Finder. The second one,
tackling reactive perception, encodes the observation into a
vector fed to the GRU. This representation of the observation
is thus more directly used in the decision making process —
the name Reactive is certainly not 100% accurate, since the
output of this module is still used to update agent memory,
but this concerns only the hidden GRU memory and not the
main implicit representations.

Reactive perception We use the encoder module in [51]
(ref from the main paper), which encodes visual ob-
servations at each step. Table 1 (Enc) presents the
hyperparameters of the convolutional layers in this vi-
sual encoder. Is is composed of 3 convolutional layers
follower by a linear layer. ReLU activations are used.
The embedding produced by this visual encoder is fed
to the GRU module. In our work, the reactive percep-
tion module has been pre-trained with auxiliary losses,
which corresponds to the method in [34] (ref from the
main paper). It is then frozen and not updated during
RL training.

Representation perception The goal of the representation
perception module is to extract vectors to be added to
the Semantic Finder training replay buffer. The back-
bone encoder is the same as the reactive perception
module (see Enc in Table 1) also pre-trained from the
agent in [34] (ref from the main paper). This network is
augmented with a segmentation head and is fine-tuned
end-to-end on the task of segmenting MultiON target
objects. Table 1 (Seg) details the architecture of the
segmentation head. It is composed of 3 convolutional
layers with ReLU activations, except for the last layer
where a softmax activation is applied. After this train-
ing phase, the weights of the representation perception
module are frozen and not updated during RL training.

5. Algorithmitic description of an agent for-
ward pass

Algorithm 1 gives a high-level overview of the different steps
happening after receiving the current observation from the
environment to take the most suitable action.

5.1. Lines 1 − 5 — Adding training samples to the
semantic replay buffer

The segmentation map mt is obtained by passing the RGB-D
observation ot through the representation perception module,
i.e. a segmentation model pre-trained to segment the target
objects (Line 2). An inverse projection operation, denoted
invProj() is used to project pixels from ot into their 3D
coordinates nt using the depth channel of ot and the known
camera intrinsics K (Line 3). A meanpooling operation,



Model layer id type in channels out channels kernel size stride in padding out padding

Dec

0 TransposeConv2D 64 32 3 2 0 0
1 TransposeConv2D 32 32 3 2 0 0
2 TransposeConv2D 32 16 3 2 0 0
3 TransposeConv2D 16 8 3 2 0 0
4 TransposeConv2D 8 8 3 2 0 0
5 TransposeConv2D 8 3 3 2 0 1

Enc
0 Conv2D 4 32 8 4 0 −
1 Conv2D 32 64 4 2 0 −
2 Conv2D 64 32 3 1 0 −

Seg
0 Conv2D 32 32 5 1 2 −
1 Conv2D 32 32 5 1 2 −
2 Conv2D 32 9 3 1 1 −

Table 1. Convolutional layers: hyperparameter values in the different presented CNN architectures. Dec is the CNN decoder trained with
the global reader, Enc is the visual encoder used in both the representation and reactive perceptions, Seg is the segmentation head combined
with Enc in the representation perception module c.

Algorithm 1: Different steps necessary to update
implicit representations at each agent step.

Input :Observation ot, camera intrinsics K, goal
gt, replay buffers rs and ro, weights θs,t,
θo,t

1 // Adding training samples to the
semantic replay buffer

2 mt = p(ot)
3 nt = invProj(ot,K)
4 kt = meanPooling(nt)
5 rs = addSemSamples(rs,mt, kt)
6 // Adding training samples to the

occupancy replay buffer
7 lt = labelOccPos(nt)
8 ro = addOccSamples(ro, nt, lt)
9 // Updating the Semantic Finder

10 for i← 0 to ns − 1 do
11 bs = getSemBatch(rs)
12 θs,t = SGD(bs, θs,t)
13 end for
14 // Updating the Occupancy and

Exploration Implicit
Representation

15 loss = 0
16 j = 0
17 while loss > thresh and j < no do
18 bo = getOccBatch(ro)
19 loss = eval(bo, θo,t)
20 θo,t = SGD(bo, θo,t)
21 j = j + 1

22 end while

denoted meanPooling() is then applied to nt in order to
obtain the mean 3D coordinates of all pixels in each cell of
the segmentation map mt (Line 4). Finally, pairs of softmax
distribution over classes from mt and mean 3D coordinates
are added to the training replay buffer of the Semantic Finder.
This is implemented as the addSemSamples() in the algo-
rithm (Line 5).

5.2. Lines 6 − 8 — Adding training samples to the
occupancy replay buffer

The 3D coordinates of projected pixels in nt are compared
with threshold values along their vertical y coordinate to be
either labelled as navigable space or obstacle. Only 3D
points with their vertical coordinate below than another
threshold value are kept. These comparisons are done in
the labelOccPos() function (Line 7). Pairs of label and 3D
coordinates are then sampled in order to keep the balance be-
tween the two classes and added to the training replay buffer
of the Occupancy and Exploration Implicit Representation.
This is the addOccSamples() function (Line 8).

5.3. Lines 9− 13 — Updating the Semantic Finder

Two operations are repeated ns times. First a batch of
training examples bs is sampled (getSemBatch(), line 11).
Then, the SGD() function encapsulates the forward pass of
fs on the sampled batch, the L1 loss computation, gradient
computation and finally backpropagation. In this work, we
fixed ns = 1.

5.4. Lines 14 − 22 — Updating the Occupancy and
Exploration Implicit Representation

The implicit representation is iteratively updated for a max-
imum of no steps while the error of the model (loss, ini-
tialized to 0 in line 15) is higher than a threshold. Same as
for the Semantic Finder, a training batch bo is first sampled



(getOccBatch(), line 18). The model is then evaluated on
samples from bo (Line 19). The SGD() function is then
applied to update the implicit representation. In this work,
we chose no = 20 and thresh = 0.3.

6. Capacity of the Semantic Finder
This section provides further details about the study con-
ducted to evaluate the impact of number of objects and the
nature of their representation on the capacity of the Semantic
Finder to memorize their position, and is complementary to
the paragraph “Capacity of the Semantic Finder” in Section
4 and Figure 3 of the main paper.

To be flexible in the amount of objects we can use, we
perform these experiments independently of the official Mul-
tiON benchmark. We consider three new scenarios, and for
each one, a dataset is generated and used to train the Seman-
tic Finder. All datasets are made of (query, position) pairs
with positions being uniformly sampled between arbitrary
scene bounds (between 0 and 1 along each axis). For each
dataset, we also create variants varying the sample size. To
reduce the amount of hyper-parameters (e.g. batch size), we
ressort to gradient descent as opposed to stochastic gradient
descent, i.e. each gradient step is computed over the whole
dataset. The considered metrics is the mean L1 error on the
prediction of positions as a function of the number of objects
to memorize. The difference between the three scenarios is
in the nature of queries associated with positions, and each
scenario corresponds to a sub figure of Figure 3 in the main
paper.

In Figure 3a, for a given size of the dataset, i.e. for
given number of objects, each query is a 1-in-K encoded
vector of the object category, which means that the query
dimensions grows with growing numbers of objects. This
evaluates the representation in situations where objects are
identified by a unique class index. Provided a sufficient
number of gradient steps, we can see that the error stays low
even with an increasing number of objects. We conjecture
that the good performance of this setting is due to the growth
in, both, query size and thus capacity of the model (as the
query is the input to the model) as the number of objects
grows.

In Figure 3b, the query vectors have a fixed dimension
of 9, equivalent to the dimension in the MultiON benchmark.
Queries are not 1-in-K encoded, but composed of randomly
sampled values. Even though more gradient steps are helpful,
the conclusion here is that increasing the number of objects
has a negative impact on the mean error of the model. Unlike
in (a), the number of parameters does not increase here with
number of objects as queries have a fixed size. This is thus
an illustration of the challenge to memorize an increasingly
high number of objects with a fixed model capacity.

Figure 3c is a combination of (a) and (b) with query size
increasing with number of objects and queries composed of

Optimizer Adam
Adam eps 1e-5

Learning rate 2.5e-4
Linear learning rate decay ✓

Number of epochs 2
Number of parallel envs 16 or 4
Number of mini batches 4 or 1

Env. steps per update 128
Clipping ratio 0.2

Linear clip decay ✓
Value loss coefficient 0.5
Entropy coefficient 0.01
Max Grad Norm 0.2

GAE ✓
GAE-λ 0.95

Discount factor 0.99
Reward window size 50

Table 2. PPO hyper-parameters: Values for hyper-parameters
used when training all agents in this work.

random values (no one-hot vectors). The increase in model
capacity with more objects seems again to be beneficial
provided enough gradient steps. However, its is clear that the
positions associated with random queries are more difficult
to memorize than for one-hot queries. This emphasizes the
importance of the chosen query representation when building
query-able semantic implicit representations.

7. Agent training details
All agents evaluated in this work are trained with Proximal
Policy Optimization (PPO) [44], following settings from
previous work [51, 34]. We provide a formulation of the
reward function and the PPO hyper-parameters in the next
sub-sections. Reward function — — The reward function
at time-step t is composed of three terms,

Rt = 1reached
t ·Rgoal +Rcloser +Rtime-penalty (1)

where 1reached
t is the indicator function that equals 1 if the

Found action was called at time t while being close enough to
the target, and 0 otherwise. Rcloser is a reward shaping term
taking as value the decrease in geodesic distance to the next
goal compared to previous timestep. Finally, Rtime-penalty is
a negative slack reward to encourage taken paths to be as
short as possible.

PPO hyper-parameters — Table 2 presents the PPO
hyper-parameter values used to train all agents in this work.

8. Amount of compute
Table 3 shows the compute resources used to train, validate
and test the different models involved in results presented in
Table 1 and 2 in the main paper.



Type 0− 70 30− 70 50− 70 S O Nb episodes Nb GPUs GPU GPU time Nb runs Tot. GPU time

Train ✓ − − 1 V100 5d 3 15d
✓ ✓ − 1 V100 4.5d 3 13.5d

✓ ✓ ✓ 1 V100 4d 3 12d

Val 1000 1 Titan X 4h 90(9 ∗ 10) 15d

Test 1000 1 Titan X 4h 9 1.1d

Table 3. Amount of compute: GPU days for runs involved in Tables 1 and 2 in the main paper.

9. Limitations of the work
The proposed approach has the following limitations

• Slower RL training compared to baseline agents. Even
if reaching an average of 45 fps with 2 implicit repre-
sentations updated with backpropagation at each agent
step is already quite satisfying, we are still far from the
150 fps when training ProjNeuralMap or 200 fps
for NoMap.

• The Semantic Finder can not deal with several instances
of the same object type. This is not a problem when
considering the MultiON task, but will be addressed in
future work.

• The Semantic Finder only provides the position of an
object of interest. Thus, it does not provide the agent
with any information about how to reach the given tar-
get. Outputting a geodesic distance, and even a shortest
path to the object would be interesting as future work.

• The current formulation of the uncertainty necessitates
access to the full replay buffer of the episode. Future
work will target estimating the uncertainty directly from
the weights of the implicit representation.

10. Leveraging environment regularities and
semantic priors in implicit representations

In this work, the weights of neural implicit representations
are initialized from scratch at the beginning of each new
episode and optimized in real time as the agent interacts with
the environment. This is done in the same way as an explicit
map would be updated on the fly during navigation. Train-
ing efficiency and the quality of the learnt representations
are thus two important factors. Leveraging the knowledge
about scene layout and semantic priors that was gained by
each implicit representation to speed up the training of oth-
ers and improving the quality of the provided mapping is
thus a relevant future direction. Meta-learning better weight
initializations, as was done in previous work (Sitzmann et
al. MetaSDF: Meta-learning Signed Distance Functions,
NeurIPS 2020), or having a common backbone followed by

randomly initialized layers for new episodes are two promis-
ing directions.

11. Importance of Fourier features
Figure 5 compares the top-down map obtained after query-
ing the Occupancy and Exploration Implicit Representation
trained with and without Fourier features. On each plot, the
left and right maps respectively show the impact of using
and not using Fourier features. Without the latter, no detail
about the environment layout can be reconstructed. This cor-
roborates findings also reported in other literature on implicit
representations and coordinate networks, e.g. (Mildenhall et
al., NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis, ECCV 2020)

12. Importance of Occupancy and Exploration
information

In an instance based post-hoc analysis, we attempt to visu-
alize the way how the implicit Occupancy and Exploration
Representation is used by the agent with two different exam-
ples.

12.1. Occupancy information

Figure 6 shows an example episode from the MultiON 2021
challenge minival set targeted by two different agent variants.

Without the Occupancy and Exploration Represen-
tation — the agent fails to find a target that was already
observed in the past: at the beginning of the episode, the
agent observes the white cylinder, while the current target
is the pink object. The agent thus explores the environment,
finds it and properly calls the Found action. The next target
is then the white object. As can be seen, the Semantic Finder
properly locates the target, since it had been previously ob-
served. However, the agent fails to backtrack, first entering
a room without finding a path to the goal and then going in
the wrong direction. It finally calls the Found action while
not being close to the white target.

The full agent — also having access to the Occupancy
and Exploration Implicit Representation succeeds in reach-
ing the white target (after finding the pink target, not shown
on the Figure). Moreover, in visualizations of, both, the im-



plicit representation fo and the reconstruction from the latent
representation extracted by the Global Reader r, we can see
the path to the goal (visualized as a red arrow) marked as
explored area. All the information for the agent to correctly
navigate towards the white object is thus contained in the
implicit map and its global summary vector.

This analysis cannot corroborate that the agent indeed
used the representation as explained; however, we can at
least provide evidence that the (successful) full agent had
access to information, which was crucial to solve a task, on
which the baseline agent failed.

12.2. Exploration information

Figure 7 shows another example episode taken from the
MultiON 2021 challenge minival set.

Without the Occupancy and Exploration Representa-
tion — the agent fails to explore the scene to find a target:
the first target object is black. To this end, the agent must
explore the environment. It starts to explore but misses a
part of the scene (containing the black target), which is never
explored for the rest of the episode. It finally calls the Found
action far away from the black target.

The full agent — also having access to the Occupancy
and Exploration Implicit Representation succeeds in finding
the black target. It successfully explores the part of the
scene that contains the object. In visualizations of, both, the
implicit representation fo and the reconstruction from the
latent vector extracted by the Global Reader r, we can see
that the area to observe (visualized by a red shape) is at the
frontier between explored and unexplored parts of the scene.
This information can thus guide the agent to move towards
the unexplored area.



Target: 

Target: 

Target: 

Target: 

Target: 

Target: 

Target: 

Target: 

Pink object seen: Drop in uncertainty 

about current target

White object to find: Uncertainty still 
low as white object already seen

Yellow object to find: High uncertainty as 
never seen before

Yellow object seen: Drop in uncertainty 

about current target

Figure 3. Agent rollout on an example successful episode from the MultiON CVPR 2021 Challenge minival set. From left to right:
RGB-D ego view, topdown map (viz only) with targets (squares) and their estimated location by the Semantic Finder (dots, shaded region
for uncertainty), map from the Occupancy and Exploration Implicit Representation, reconstructed egomap from the global reader and CNN
Decoder trained end-to-end, uncertainty of the Semantic Finder on the currently selected target.



Target: 

Target: 

Blue object seen: Drop in uncertainty 

about current targetTarget: 

Target: 

Uncertainty relatively low as white 
object seen briefly at the beginning

Target: 

Target: 

Target: 
Uncertainty is still high: object has 

not been found

End of episode: target object has not 
been foundTarget: 

Figure 4. Agent rollout on an example unsuccessful episode from the MultiON CVPR 2021 Challenge minival set. From left to right:
RGB-D ego view, topdown map (viz only) with targets (squares) and their estimated location by the Semantic Finder (dots, shaded region
for uncertainty), map from the Occupancy and Exploration Implicit Representation, reconstructed egomap from the global reader and CNN
Decoder trained end-to-end, uncertainty of the Semantic Finder on the currently selected target.



Figure 5. Comparison of top-down maps obtained by querying the Occupancy and Exploration Implicit Representation trained with (left)
and without (right) Fourier features.



Without Global 
ReaderTarget: 

Target: 

Target: 

Target: 

With Global Reader
Target: 

Figure 6. Importance of occupancy information: Episode exam-
ple from the MultiON 2021 challenge minival set where an agent
without the proposed Occupancy and Exploration Implicit Repre-
sentation fails to find the white target. Another agent equipped
with the representation containing occupancy information finds the
target. Some information about the path to reach it (indicated with
the red arrow) is indeed contained in the map. The green cone
corresponds to the agent’s position.

Without Global 
ReaderTarget: 

With Global Reader

Target: 

Target: 

Target: 

Target: 

Target: 

Figure 7. Importance of exploration information: Episode exam-
ple from the MultiON 2021 challenge minival set where an agent
without the proposed Occupancy and Exploration Implicit Repre-
sentation fails to find the black target. Another agent equipped
with the representation containing occupancy information finds the
target. Some information about the area to explore (indicated with
the red shape) is indeed contained in the map. The green cone
corresponds to the agent’s position.


